
Package: uptasticsearch (via r-universe)
October 21, 2024

Type Package

Title Get Data Frame Representations of 'Elasticsearch' Results

Version 0.4.0

Maintainer James Lamb <jaylamb20@gmail.com>

Description 'Elasticsearch' is an open-source, distributed,
document-based datastore
(<https://www.elastic.co/products/elasticsearch>). It provides
an 'HTTP' 'API' for querying the database and extracting
datasets, but that 'API' was not designed for common data
science workflows like pulling large batches of records and
normalizing those documents into a data frame that can be used
as a training dataset for statistical models. 'uptasticsearch'
provides an interface for 'Elasticsearch' that is explicitly
designed to make these data science workflows easy and fun.

Depends R (>= 3.3.0)

Imports assertthat (>= 0.2.0), data.table, futile.logger, httr,
jsonlite, purrr, stringr, utils, uuid

Suggests knitr, rmarkdown, testthat

License BSD_3_clause + file LICENSE

URL https://github.com/uptake/uptasticsearch

BugReports https://github.com/uptake/uptasticsearch/issues

LazyData TRUE

RoxygenNote 6.1.1

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author James Lamb [aut, cre], Nick Paras [aut], Austin Dickey [aut],
Michael Frasco [ctb], Weiwen Gu [ctb], Will Dearden [ctb],
Uptake Technologies Inc. [cph]

Date/Publication 2019-09-11 18:30:03 UTC

1

https://www.elastic.co/products/elasticsearch
https://github.com/uptake/uptasticsearch
https://github.com/uptake/uptasticsearch/issues

2 chomp_aggs

Repository https://jameslamb.r-universe.dev

RemoteUrl https://github.com/cran/uptasticsearch

RemoteRef HEAD

RemoteSha 22b9b1578f142b8c08b26fa8d1f6166483fb12ef

Contents
chomp_aggs . 2
chomp_hits . 3
doc_shared . 4
es_search . 4
get_fields . 6
parse_date_time . 7
unpack_nested_data . 8

Index 9

chomp_aggs Aggs query to data.table

Description

Given some raw JSON from an aggs query in Elasticsearch, parse the aggregations into a data.table.

Usage

chomp_aggs(aggs_json = NULL)

Arguments

aggs_json A character vector. If its length is greater than 1, its elements will be pasted
together. This can contain a JSON returned from an aggs query in Elasticsearch,
or a filepath or URL pointing at one.

Value

A data.table representation of the result or NULL if the aggregation result is empty.

Examples

A sample raw result from an aggs query combining date_histogram and extended_stats:
result <- '{"aggregations":{"dateTime":{"buckets":[{"key_as_string":"2016-12-01T00:00:00.000Z",
"key":1480550400000,"doc_count":123,"num_potatoes":{"count":120,"min":0,"max":40,"avg":15,
"sum":1800,"sum_of_squares":28000,"variance":225,"std_deviation":15,"std_deviation_bounds":{
"upper":26,"lower":13}}},{"key_as_string":"2017-01-01T00:00:00.000Z","key":1483228800000,
"doc_count":134,"num_potatoes":{"count":131,"min":0,"max":39,"avg":16,"sum":2096,
"sum_of_squares":34000,"variance":225,"std_deviation":15,"std_deviation_bounds":{"upper":26,
"lower":13}}}]}}}'

chomp_hits 3

Parse into a data.table
aggDT <- chomp_aggs(aggs_json = result)
print(aggDT)

chomp_hits Hits to data.tables

Description

A function for converting Elasticsearch docs into R data.tables. It uses fromJSON with flatten =
TRUE to convert a JSON into an R data.frame, and formats it into a data.table.

Usage

chomp_hits(hits_json = NULL, keep_nested_data_cols = TRUE)

Arguments

hits_json A character vector. If its length is greater than 1, its elements will be pasted to-
gether. This can contain a JSON returned from a search query in Elasticsearch,
or a filepath or URL pointing at one.

keep_nested_data_cols

a boolean (default TRUE); whether to keep columns that are nested arrays in the
original JSON. A warning will be given if these columns are deleted.

Examples

A sample raw result from a hits query:
result <- '[{"_source":{"timestamp":"2017-01-01","cust_name":"Austin","details":{
"cust_class":"big_spender","location":"chicago","pastPurchases":[{"film":"The Notebook",
"pmt_amount":6.25},{"film":"The Town","pmt_amount":8.00},{"film":"Zootopia","pmt_amount":7.50,
"matinee":true}]}}},{"_source":{"timestamp":"2017-02-02","cust_name":"James","details":{
"cust_class":"peasant","location":"chicago","pastPurchases":[{"film":"Minions",
"pmt_amount":6.25,"matinee":true},{"film":"Rogue One","pmt_amount":10.25},{"film":"Bridesmaids",
"pmt_amount":8.75},{"film":"Bridesmaids","pmt_amount":6.25,"matinee":true}]}}},{"_source":{
"timestamp":"2017-03-03","cust_name":"Nick","details":{"cust_class":"critic","location":"cannes",
"pastPurchases":[{"film":"Aala Kaf Ifrit","pmt_amount":0,"matinee":true},{
"film":"Dopo la guerra (Apres la Guerre)","pmt_amount":0,"matinee":true},{
"film":"Avengers: Infinity War","pmt_amount":12.75}]}}}]'

Chomp into a data.table
sampleChompedDT <- chomp_hits(hits_json = result, keep_nested_data_cols = TRUE)
print(sampleChompedDT)

(Note: use es_search() to get here in one step)

Unpack by details.pastPurchases
unpackedDT <- unpack_nested_data(chomped_df = sampleChompedDT

, col_to_unpack = "details.pastPurchases")
print(unpackedDT)

4 es_search

doc_shared NULL Object For Common Documentation

Description

This is a NULL object with documentation so that later functions can call inheritParams

Arguments

es_host A string identifying an Elasticsearch host. This should be of the form [transfer_protocol][hostname]:[port].
For example, 'http://myindex.thing.com:9200'.

es_index The name of an Elasticsearch index to be queried. Note that passing NULL is not
supported. Technically, not passing an index to Elasticsearch is legal and results
in searching over all indexes. To be sure that this very expensive query is not
executed by accident, uptasticsearch forbids this. If you want to execute a query
over all indexes in the cluster, set this argument to "_all".

es_search Execute an ES query and get a data.table

Description

Given a query and some optional parameters, es_search gets results from HTTP requests to Elas-
ticsearch and returns a data.table representation of those results.

Usage

es_search(es_host, es_index, size = 10000, query_body = "{}",
scroll = "5m", max_hits = Inf,
n_cores = ceiling(parallel::detectCores()/2),
break_on_duplicates = TRUE, ignore_scroll_restriction = FALSE,
intermediates_dir = getwd())

Arguments

es_host A string identifying an Elasticsearch host. This should be of the form [transfer_protocol][hostname]:[port].
For example, 'http://myindex.thing.com:9200'.

es_index The name of an Elasticsearch index to be queried. Note that passing NULL is not
supported. Technically, not passing an index to Elasticsearch is legal and results
in searching over all indexes. To be sure that this very expensive query is not
executed by accident, uptasticsearch forbids this. If you want to execute a query
over all indexes in the cluster, set this argument to "_all".

size Number of records per page of results. See Elasticsearch docs for more. Note
that this will be reset to 0 if you submit a query_body with an "aggs" request in
it. Also see max_hits.

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-from-size.html

es_search 5

query_body String with a valid Elasticsearch query. Default is an empty query.

scroll How long should the scroll context be held open? This should be a duration
string like "1m" (for one minute) or "15s" (for 15 seconds). The scroll context
will be refreshed every time you ask Elasticsearch for another record, so this pa-
rameter should just be the amount of time you expect to pass between requests.
See the Elasticsearch scroll/pagination docs for more information.

max_hits Integer. If specified, es_search will stop pulling data as soon as it has pulled
this many hits. Default is Inf, meaning that all possible hits will be pulled.

n_cores Number of cores to distribute fetching and processing over.
break_on_duplicates

Boolean, defaults to TRUE. es_search uses the size of the final object it returns
to check whether or not some data were lost during the processing. If you have
duplicates in the source data, you will have to set this flag to FALSE and just
trust that no data have been lost. Sorry :(.

ignore_scroll_restriction

There is a cost associated with keeping an Elasticsearch scroll context open. By
default, this function does not allow arguments to scroll which exceed one
hour. This is done to prevent costly mistakes made by novice Elasticsearch
users. If you understand the cost of keeping the context open for a long time and
would like to pass a scroll value longer than an hour, set ignore_scroll_restriction
to TRUE.

intermediates_dir

When scrolling over search results, this function writes intermediate results to
disk. By default, ‘es_search‘ will create a temporary directory in whatever work-
ing directory the function is called from. If you want to change this behavior,
provide a path here. ‘es_search‘ will create and write to a temporary directory
under whatever path you provide.

References

ES 6 scrolling strategy

Examples

Not run:

###=== Example 1: Get low-scoring food survey results ===###

query_body <- '{"query":{"filtered":{"filter":{"bool":{"must":[
{"exists":{"field":"customer_comments"}},
{"terms":{"overall_satisfaction":["very low","low"]}}]}}},
"query":{"match_phrase":{"customer_comments":"food"}}}}'

Execute the query, parse into a data.table
commentDT <- es_search(es_host = 'http://mydb.mycompany.com:9200'

, es_index = "survey_results"
, query_body = query_body
, scroll = "1m"
, n_cores = 4)

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-scroll.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.x/search-request-scroll.html

6 get_fields

###=== Example 2: Time series agg features ===###

Create query that will give you daily summary stats for revenue
query_body <- '{"query":{"filtered":{"filter":{"bool":{"must":[

{"exists":{"field":"pmt_amount"}}]}}}},
"aggs":{"timestamp":{"date_histogram":{"field":"timestamp","interval":"day"},

"aggs":{"revenue":{"extended_stats":{"field":"pmt_amount"}}}}},"size":0}'

Execute the query and get the result
resultDT <- es_search(es_host = "http://es.custdb.mycompany.com:9200"

, es_index = 'ticket_sales'
, query_body = query_body)

End(Not run)

get_fields Get the names and data types of the indexed fields in an index

Description

For a given Elasticsearch index, return the mapping from field name to data type for all indexed
fields.

Usage

get_fields(es_host, es_indices = "_all")

Arguments

es_host A string identifying an Elasticsearch host. This should be of the form [transfer_protocol][hostname]:[port].
For example, 'http://myindex.thing.com:9200'.

es_indices A character vector that contains the names of indices for which to get mappings.
Default is '_all', which means get the mapping for all indices. Names of
indices can be treated as regular expressions.

Value

A data.table containing four columns: index, type, field, and data_type

Examples

Not run:
get the mapping for all indexed fields in the ticket_sales and customers indices
mappingDT <- get_fields(es_host = "http://es.custdb.mycompany.com:9200"

, es_indices = c("ticket_sales", "customers"))

End(Not run)

parse_date_time 7

parse_date_time Parse date-times from Elasticsearch records

Description

Given a data.table with date-time strings, this function converts those dates-times to type POSIXct
with the appropriate time zone. Assumption is that dates are of the form "2016-07-25T22:15:19Z"
where T is just a separator and the last letter is a military timezone.

This is a side-effect-free function: it returns a new data.table and the input data.table is unmodified.

Usage

parse_date_time(input_df, date_cols, assume_tz = "UTC")

Arguments

input_df a data.table with one or more date-time columns you want to convert

date_cols Character vector of column names to convert. Columns should have string dates
of the form "2016-07-25T22:15:19Z".

assume_tz Timezone to convert to if parsing fails. Default is UTC

References

https://www.timeanddate.com/time/zones/military

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Examples

Sample es_search(), chomp_hits(), or chomp_aggs() output:
someDT <- data.table::data.table(id = 1:5

, company = c("Apple", "Apple", "Banana", "Banana", "Cucumber")
, timestamp = c("2015-03-14T09:26:53B", "2015-03-14T09:26:54B"

, "2031-06-28T08:53:07Z", "2031-06-28T08:53:08Z"
, "2000-01-01"))

Note that the date field is character right now
str(someDT)

Let's fix that!
someDT <- parse_date_time(input_df = someDT

, date_cols = "timestamp"
, assume_tz = "UTC")

str(someDT)

https://www.timeanddate.com/time/zones/military
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

8 unpack_nested_data

unpack_nested_data Unpack a nested data.table

Description

After calling a chomp_* function or es_search, if you had a nested array in the JSON, its corre-
sponding column in the resulting data.table is a data.frame itself (or a list of vectors). This function
expands that nested column out, adding its data to the original data.table, and duplicating metadata
down the rows as necessary.

This is a side-effect-free function: it returns a new data.table and the input data.table is unmodified.

Usage

unpack_nested_data(chomped_df, col_to_unpack)

Arguments

chomped_df a data.table

col_to_unpack a character vector of length one: the column name to unpack

Examples

A sample raw result from a hits query:
result <- '[{"_source":{"timestamp":"2017-01-01","cust_name":"Austin","details":{
"cust_class":"big_spender","location":"chicago","pastPurchases":[{"film":"The Notebook",
"pmt_amount":6.25},{"film":"The Town","pmt_amount":8.00},{"film":"Zootopia","pmt_amount":7.50,
"matinee":true}]}}},{"_source":{"timestamp":"2017-02-02","cust_name":"James","details":{
"cust_class":"peasant","location":"chicago","pastPurchases":[{"film":"Minions",
"pmt_amount":6.25,"matinee":true},{"film":"Rogue One","pmt_amount":10.25},{"film":"Bridesmaids",
"pmt_amount":8.75},{"film":"Bridesmaids","pmt_amount":6.25,"matinee":true}]}}},{"_source":{
"timestamp":"2017-03-03","cust_name":"Nick","details":{"cust_class":"critic","location":"cannes",
"pastPurchases":[{"film":"Aala Kaf Ifrit","pmt_amount":0,"matinee":true},{
"film":"Dopo la guerra (Apres la Guerre)","pmt_amount":0,"matinee":true},{
"film":"Avengers: Infinity War","pmt_amount":12.75}]}}}]'

Chomp into a data.table
sampleChompedDT <- chomp_hits(hits_json = result, keep_nested_data_cols = TRUE)
print(sampleChompedDT)

(Note: use es_search() to get here in one step)

Unpack by details.pastPurchases
unpackedDT <- unpack_nested_data(chomped_df = sampleChompedDT

, col_to_unpack = "details.pastPurchases")
print(unpackedDT)

Index

chomp_aggs, 2
chomp_hits, 3

doc_shared, 4

es_search, 4

fromJSON, 3

get_fields, 6

parse_date_time, 7

unpack_nested_data, 8

9

	chomp_aggs
	chomp_hits
	doc_shared
	es_search
	get_fields
	parse_date_time
	unpack_nested_data
	Index

